extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xDic5).1C23 = D20.38D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).1C2^3 | 480,1076 |
(C3xDic5).2C23 = D20.39D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 4- | (C3xDic5).2C2^3 | 480,1077 |
(C3xDic5).3C23 = C2xS3xDic10 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).3C2^3 | 480,1078 |
(C3xDic5).4C23 = C2xD12:D5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).4C2^3 | 480,1079 |
(C3xDic5).5C23 = C30.C24 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).5C2^3 | 480,1080 |
(C3xDic5).6C23 = C2xD60:C2 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).6C2^3 | 480,1081 |
(C3xDic5).7C23 = C2xD15:Q8 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).7C2^3 | 480,1082 |
(C3xDic5).8C23 = S3xC4oD20 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).8C2^3 | 480,1091 |
(C3xDic5).9C23 = D20:24D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).9C2^3 | 480,1092 |
(C3xDic5).10C23 = D20:26D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).10C2^3 | 480,1094 |
(C3xDic5).11C23 = D20:29D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 4+ | (C3xDic5).11C2^3 | 480,1095 |
(C3xDic5).12C23 = D5xD4:2S3 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).12C2^3 | 480,1098 |
(C3xDic5).13C23 = D30.C23 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).13C2^3 | 480,1100 |
(C3xDic5).14C23 = D20:13D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).14C2^3 | 480,1101 |
(C3xDic5).15C23 = D20:14D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).15C2^3 | 480,1102 |
(C3xDic5).16C23 = C30.33C24 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8+ | (C3xDic5).16C2^3 | 480,1105 |
(C3xDic5).17C23 = D12.29D10 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8- | (C3xDic5).17C2^3 | 480,1106 |
(C3xDic5).18C23 = S3xQ8xD5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).18C2^3 | 480,1107 |
(C3xDic5).19C23 = D5xQ8:3S3 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).19C2^3 | 480,1108 |
(C3xDic5).20C23 = C2xDic5.D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).20C2^3 | 480,1113 |
(C3xDic5).21C23 = C2xC30.C23 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).21C2^3 | 480,1114 |
(C3xDic5).22C23 = C15:2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).22C2^3 | 480,1125 |
(C3xDic5).23C23 = S3xD5:C8 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).23C2^3 | 480,986 |
(C3xDic5).24C23 = D12.2F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8- | (C3xDic5).24C2^3 | 480,987 |
(C3xDic5).25C23 = S3xC4.F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).25C2^3 | 480,988 |
(C3xDic5).26C23 = D12.F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8- | (C3xDic5).26C2^3 | 480,989 |
(C3xDic5).27C23 = D60.C4 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8+ | (C3xDic5).27C2^3 | 480,990 |
(C3xDic5).28C23 = D15:M4(2) | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).28C2^3 | 480,991 |
(C3xDic5).29C23 = Dic6.F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8+ | (C3xDic5).29C2^3 | 480,992 |
(C3xDic5).30C23 = C5:C8:D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).30C2^3 | 480,993 |
(C3xDic5).31C23 = C2xS3xC5:C8 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).31C2^3 | 480,1002 |
(C3xDic5).32C23 = C5:C8.D6 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).32C2^3 | 480,1003 |
(C3xDic5).33C23 = S3xC22.F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).33C2^3 | 480,1004 |
(C3xDic5).34C23 = D15:C8:C2 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).34C2^3 | 480,1005 |
(C3xDic5).35C23 = C2xD15:C8 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).35C2^3 | 480,1006 |
(C3xDic5).36C23 = D15:2M4(2) | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).36C2^3 | 480,1007 |
(C3xDic5).37C23 = C2xD6.F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).37C2^3 | 480,1008 |
(C3xDic5).38C23 = C2xDic3.F5 | φ: C23/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).38C2^3 | 480,1009 |
(C3xDic5).39C23 = C2xD5xDic6 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).39C2^3 | 480,1073 |
(C3xDic5).40C23 = C2xD6.D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).40C2^3 | 480,1083 |
(C3xDic5).41C23 = C2xD12:5D5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).41C2^3 | 480,1084 |
(C3xDic5).42C23 = C2xC12.28D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).42C2^3 | 480,1085 |
(C3xDic5).43C23 = D5xC4oD12 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).43C2^3 | 480,1090 |
(C3xDic5).44C23 = C15:2- 1+4 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 8- | (C3xDic5).44C2^3 | 480,1096 |
(C3xDic5).45C23 = S3xD4:2D5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).45C2^3 | 480,1099 |
(C3xDic5).46C23 = D12:14D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).46C2^3 | 480,1103 |
(C3xDic5).47C23 = D20.29D6 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 8- | (C3xDic5).47C2^3 | 480,1104 |
(C3xDic5).48C23 = S3xQ8:2D5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).48C2^3 | 480,1109 |
(C3xDic5).49C23 = D20:16D6 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).49C2^3 | 480,1110 |
(C3xDic5).50C23 = D20:17D6 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).50C2^3 | 480,1111 |
(C3xDic5).51C23 = C2xDic3.D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).51C2^3 | 480,1116 |
(C3xDic5).52C23 = C22xC15:Q8 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).52C2^3 | 480,1121 |
(C3xDic5).53C23 = C2xC6xDic10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).53C2^3 | 480,1135 |
(C3xDic5).54C23 = C6xC4oD20 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).54C2^3 | 480,1138 |
(C3xDic5).55C23 = C6xD4:2D5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).55C2^3 | 480,1140 |
(C3xDic5).56C23 = C3xD4:6D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).56C2^3 | 480,1141 |
(C3xDic5).57C23 = C6xQ8xD5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).57C2^3 | 480,1142 |
(C3xDic5).58C23 = C3xQ8.10D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).58C2^3 | 480,1144 |
(C3xDic5).59C23 = C3xD5xC4oD4 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).59C2^3 | 480,1145 |
(C3xDic5).60C23 = C3xD4:8D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).60C2^3 | 480,1146 |
(C3xDic5).61C23 = C3xD4.10D10 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).61C2^3 | 480,1147 |
(C3xDic5).62C23 = C2xC60.C4 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).62C2^3 | 480,1060 |
(C3xDic5).63C23 = C2xC12.F5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).63C2^3 | 480,1061 |
(C3xDic5).64C23 = C60.59(C2xC4) | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).64C2^3 | 480,1062 |
(C3xDic5).65C23 = Dic10.Dic3 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).65C2^3 | 480,1066 |
(C3xDic5).66C23 = D20.Dic3 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).66C2^3 | 480,1068 |
(C3xDic5).67C23 = C22xC15:C8 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).67C2^3 | 480,1070 |
(C3xDic5).68C23 = C2xC15:8M4(2) | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).68C2^3 | 480,1071 |
(C3xDic5).69C23 = C6xD5:C8 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).69C2^3 | 480,1047 |
(C3xDic5).70C23 = C6xC4.F5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).70C2^3 | 480,1048 |
(C3xDic5).71C23 = C3xD5:M4(2) | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).71C2^3 | 480,1049 |
(C3xDic5).72C23 = C3xD4.F5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).72C2^3 | 480,1053 |
(C3xDic5).73C23 = C3xQ8.F5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).73C2^3 | 480,1055 |
(C3xDic5).74C23 = C2xC6xC5:C8 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).74C2^3 | 480,1057 |
(C3xDic5).75C23 = C6xC22.F5 | φ: C23/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).75C2^3 | 480,1058 |
(C3xDic5).76C23 = C6xQ8:2D5 | φ: trivial image | 240 | | (C3xDic5).76C2^3 | 480,1143 |