Extensions 1→N→G→Q→1 with N=C3xDic5 and Q=C23

Direct product G=NxQ with N=C3xDic5 and Q=C23
dρLabelID
Dic5xC22xC6480Dic5xC2^2xC6480,1148

Semidirect products G=N:Q with N=C3xDic5 and Q=C23
extensionφ:Q→Out NdρLabelID
(C3xDic5):1C23 = S3xD4xD5φ: C23/C2C22 ⊆ Out C3xDic5608+(C3xDic5):1C2^3480,1097
(C3xDic5):2C23 = C2xS3xC5:D4φ: C23/C2C22 ⊆ Out C3xDic5120(C3xDic5):2C2^3480,1123
(C3xDic5):3C23 = C2xD10:D6φ: C23/C2C22 ⊆ Out C3xDic5120(C3xDic5):3C2^3480,1124
(C3xDic5):4C23 = S3xC2xC4xD5φ: C23/C22C2 ⊆ Out C3xDic5120(C3xDic5):4C2^3480,1086
(C3xDic5):5C23 = C2xD5xD12φ: C23/C22C2 ⊆ Out C3xDic5120(C3xDic5):5C2^3480,1087
(C3xDic5):6C23 = C22xS3xDic5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5):6C2^3480,1115
(C3xDic5):7C23 = C22xD30.C2φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5):7C2^3480,1117
(C3xDic5):8C23 = C22xC5:D12φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5):8C2^3480,1120
(C3xDic5):9C23 = C6xD4xD5φ: C23/C22C2 ⊆ Out C3xDic5120(C3xDic5):9C2^3480,1139
(C3xDic5):10C23 = C2xC6xC5:D4φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5):10C2^3480,1149
(C3xDic5):11C23 = D5xC22xC12φ: trivial image240(C3xDic5):11C2^3480,1136

Non-split extensions G=N.Q with N=C3xDic5 and Q=C23
extensionφ:Q→Out NdρLabelID
(C3xDic5).1C23 = D20.38D6φ: C23/C2C22 ⊆ Out C3xDic52404(C3xDic5).1C2^3480,1076
(C3xDic5).2C23 = D20.39D6φ: C23/C2C22 ⊆ Out C3xDic52404-(C3xDic5).2C2^3480,1077
(C3xDic5).3C23 = C2xS3xDic10φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).3C2^3480,1078
(C3xDic5).4C23 = C2xD12:D5φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).4C2^3480,1079
(C3xDic5).5C23 = C30.C24φ: C23/C2C22 ⊆ Out C3xDic52404(C3xDic5).5C2^3480,1080
(C3xDic5).6C23 = C2xD60:C2φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).6C2^3480,1081
(C3xDic5).7C23 = C2xD15:Q8φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).7C2^3480,1082
(C3xDic5).8C23 = S3xC4oD20φ: C23/C2C22 ⊆ Out C3xDic51204(C3xDic5).8C2^3480,1091
(C3xDic5).9C23 = D20:24D6φ: C23/C2C22 ⊆ Out C3xDic51204(C3xDic5).9C2^3480,1092
(C3xDic5).10C23 = D20:26D6φ: C23/C2C22 ⊆ Out C3xDic51204(C3xDic5).10C2^3480,1094
(C3xDic5).11C23 = D20:29D6φ: C23/C2C22 ⊆ Out C3xDic51204+(C3xDic5).11C2^3480,1095
(C3xDic5).12C23 = D5xD4:2S3φ: C23/C2C22 ⊆ Out C3xDic51208-(C3xDic5).12C2^3480,1098
(C3xDic5).13C23 = D30.C23φ: C23/C2C22 ⊆ Out C3xDic51208+(C3xDic5).13C2^3480,1100
(C3xDic5).14C23 = D20:13D6φ: C23/C2C22 ⊆ Out C3xDic51208-(C3xDic5).14C2^3480,1101
(C3xDic5).15C23 = D20:14D6φ: C23/C2C22 ⊆ Out C3xDic51208+(C3xDic5).15C2^3480,1102
(C3xDic5).16C23 = C30.33C24φ: C23/C2C22 ⊆ Out C3xDic52408+(C3xDic5).16C2^3480,1105
(C3xDic5).17C23 = D12.29D10φ: C23/C2C22 ⊆ Out C3xDic52408-(C3xDic5).17C2^3480,1106
(C3xDic5).18C23 = S3xQ8xD5φ: C23/C2C22 ⊆ Out C3xDic51208-(C3xDic5).18C2^3480,1107
(C3xDic5).19C23 = D5xQ8:3S3φ: C23/C2C22 ⊆ Out C3xDic51208+(C3xDic5).19C2^3480,1108
(C3xDic5).20C23 = C2xDic5.D6φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).20C2^3480,1113
(C3xDic5).21C23 = C2xC30.C23φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).21C2^3480,1114
(C3xDic5).22C23 = C15:2+ 1+4φ: C23/C2C22 ⊆ Out C3xDic51204(C3xDic5).22C2^3480,1125
(C3xDic5).23C23 = S3xD5:C8φ: C23/C2C22 ⊆ Out C3xDic51208(C3xDic5).23C2^3480,986
(C3xDic5).24C23 = D12.2F5φ: C23/C2C22 ⊆ Out C3xDic52408-(C3xDic5).24C2^3480,987
(C3xDic5).25C23 = S3xC4.F5φ: C23/C2C22 ⊆ Out C3xDic51208(C3xDic5).25C2^3480,988
(C3xDic5).26C23 = D12.F5φ: C23/C2C22 ⊆ Out C3xDic52408-(C3xDic5).26C2^3480,989
(C3xDic5).27C23 = D60.C4φ: C23/C2C22 ⊆ Out C3xDic52408+(C3xDic5).27C2^3480,990
(C3xDic5).28C23 = D15:M4(2)φ: C23/C2C22 ⊆ Out C3xDic51208(C3xDic5).28C2^3480,991
(C3xDic5).29C23 = Dic6.F5φ: C23/C2C22 ⊆ Out C3xDic52408+(C3xDic5).29C2^3480,992
(C3xDic5).30C23 = C5:C8:D6φ: C23/C2C22 ⊆ Out C3xDic51208(C3xDic5).30C2^3480,993
(C3xDic5).31C23 = C2xS3xC5:C8φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).31C2^3480,1002
(C3xDic5).32C23 = C5:C8.D6φ: C23/C2C22 ⊆ Out C3xDic52408(C3xDic5).32C2^3480,1003
(C3xDic5).33C23 = S3xC22.F5φ: C23/C2C22 ⊆ Out C3xDic51208-(C3xDic5).33C2^3480,1004
(C3xDic5).34C23 = D15:C8:C2φ: C23/C2C22 ⊆ Out C3xDic52408(C3xDic5).34C2^3480,1005
(C3xDic5).35C23 = C2xD15:C8φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).35C2^3480,1006
(C3xDic5).36C23 = D15:2M4(2)φ: C23/C2C22 ⊆ Out C3xDic51208+(C3xDic5).36C2^3480,1007
(C3xDic5).37C23 = C2xD6.F5φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).37C2^3480,1008
(C3xDic5).38C23 = C2xDic3.F5φ: C23/C2C22 ⊆ Out C3xDic5240(C3xDic5).38C2^3480,1009
(C3xDic5).39C23 = C2xD5xDic6φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).39C2^3480,1073
(C3xDic5).40C23 = C2xD6.D10φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).40C2^3480,1083
(C3xDic5).41C23 = C2xD12:5D5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).41C2^3480,1084
(C3xDic5).42C23 = C2xC12.28D10φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).42C2^3480,1085
(C3xDic5).43C23 = D5xC4oD12φ: C23/C22C2 ⊆ Out C3xDic51204(C3xDic5).43C2^3480,1090
(C3xDic5).44C23 = C15:2- 1+4φ: C23/C22C2 ⊆ Out C3xDic52408-(C3xDic5).44C2^3480,1096
(C3xDic5).45C23 = S3xD4:2D5φ: C23/C22C2 ⊆ Out C3xDic51208-(C3xDic5).45C2^3480,1099
(C3xDic5).46C23 = D12:14D10φ: C23/C22C2 ⊆ Out C3xDic51208+(C3xDic5).46C2^3480,1103
(C3xDic5).47C23 = D20.29D6φ: C23/C22C2 ⊆ Out C3xDic52408-(C3xDic5).47C2^3480,1104
(C3xDic5).48C23 = S3xQ8:2D5φ: C23/C22C2 ⊆ Out C3xDic51208+(C3xDic5).48C2^3480,1109
(C3xDic5).49C23 = D20:16D6φ: C23/C22C2 ⊆ Out C3xDic51208-(C3xDic5).49C2^3480,1110
(C3xDic5).50C23 = D20:17D6φ: C23/C22C2 ⊆ Out C3xDic51208+(C3xDic5).50C2^3480,1111
(C3xDic5).51C23 = C2xDic3.D10φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).51C2^3480,1116
(C3xDic5).52C23 = C22xC15:Q8φ: C23/C22C2 ⊆ Out C3xDic5480(C3xDic5).52C2^3480,1121
(C3xDic5).53C23 = C2xC6xDic10φ: C23/C22C2 ⊆ Out C3xDic5480(C3xDic5).53C2^3480,1135
(C3xDic5).54C23 = C6xC4oD20φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).54C2^3480,1138
(C3xDic5).55C23 = C6xD4:2D5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).55C2^3480,1140
(C3xDic5).56C23 = C3xD4:6D10φ: C23/C22C2 ⊆ Out C3xDic51204(C3xDic5).56C2^3480,1141
(C3xDic5).57C23 = C6xQ8xD5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).57C2^3480,1142
(C3xDic5).58C23 = C3xQ8.10D10φ: C23/C22C2 ⊆ Out C3xDic52404(C3xDic5).58C2^3480,1144
(C3xDic5).59C23 = C3xD5xC4oD4φ: C23/C22C2 ⊆ Out C3xDic51204(C3xDic5).59C2^3480,1145
(C3xDic5).60C23 = C3xD4:8D10φ: C23/C22C2 ⊆ Out C3xDic51204(C3xDic5).60C2^3480,1146
(C3xDic5).61C23 = C3xD4.10D10φ: C23/C22C2 ⊆ Out C3xDic52404(C3xDic5).61C2^3480,1147
(C3xDic5).62C23 = C2xC60.C4φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).62C2^3480,1060
(C3xDic5).63C23 = C2xC12.F5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).63C2^3480,1061
(C3xDic5).64C23 = C60.59(C2xC4)φ: C23/C22C2 ⊆ Out C3xDic51204(C3xDic5).64C2^3480,1062
(C3xDic5).65C23 = Dic10.Dic3φ: C23/C22C2 ⊆ Out C3xDic52408(C3xDic5).65C2^3480,1066
(C3xDic5).66C23 = D20.Dic3φ: C23/C22C2 ⊆ Out C3xDic52408(C3xDic5).66C2^3480,1068
(C3xDic5).67C23 = C22xC15:C8φ: C23/C22C2 ⊆ Out C3xDic5480(C3xDic5).67C2^3480,1070
(C3xDic5).68C23 = C2xC15:8M4(2)φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).68C2^3480,1071
(C3xDic5).69C23 = C6xD5:C8φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).69C2^3480,1047
(C3xDic5).70C23 = C6xC4.F5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).70C2^3480,1048
(C3xDic5).71C23 = C3xD5:M4(2)φ: C23/C22C2 ⊆ Out C3xDic51204(C3xDic5).71C2^3480,1049
(C3xDic5).72C23 = C3xD4.F5φ: C23/C22C2 ⊆ Out C3xDic52408(C3xDic5).72C2^3480,1053
(C3xDic5).73C23 = C3xQ8.F5φ: C23/C22C2 ⊆ Out C3xDic52408(C3xDic5).73C2^3480,1055
(C3xDic5).74C23 = C2xC6xC5:C8φ: C23/C22C2 ⊆ Out C3xDic5480(C3xDic5).74C2^3480,1057
(C3xDic5).75C23 = C6xC22.F5φ: C23/C22C2 ⊆ Out C3xDic5240(C3xDic5).75C2^3480,1058
(C3xDic5).76C23 = C6xQ8:2D5φ: trivial image240(C3xDic5).76C2^3480,1143

׿
x
:
Z
F
o
wr
Q
<